Neural Networks Based Integrated Evaluation Method for the Effectiveness of CRM
نویسندگان
چکیده
Customer relationship management (CRM) has become one of the leading business strategies in the new economy. The effectiveness of CRM can be measured as a satisfaction level achieved by CRM activities. CRM has emerged as a major business strategy for e-business, but little research has been done in evaluating the effectiveness of CRM because of its complexity. In this paper, on the basis of building a CRM evaluation index system, we propose neural networks based integrated evaluation method for the effectiveness of CRM. It can simulate evaluation made by experts and avoid subjective mistakes. The results from the simulation are satisfied.
منابع مشابه
A new hybrid method based on fuzzy Shannon’s Entropy and fuzzy COPRAS for CRM performance evaluation (Case: Mellat Bank)
Customer relationship management is a multiple perspective business paradigm which helps companies gaining competitive advantage through relationships with their customers. An integrated framework for evaluating CRM performance is an important issue which is not addressed completely in previous studies. The main purpose and the most important contribution of this study is introducing a framewor...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملUsing the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting
The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models. Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کامل